

Decision Document

Solid Waste Management Unit B-32 Building 101-41 Catchment Pit Hawthorne Army Depot Hawthorne, Nevada

SWMU - B32

September 2000

Decision Document SWMU B-32 RECEIVED

September 2000

NOV 0 9 2000

ENVIRONMENTAL PROTECTION

The selected remedy is protective of human health and the environment. It has been shown that a complete pathway to human health and the environment does not exist, and there is no potential for an exposure pathway to be completed in the future.

U.S. Army

07 NOV 2000

Anne L. Davis

Lieutenant Colonel, U.S. Army

Commanding

State of Nevada

20 Apr. 1 2001

Paul Liebendorfer

Chief, Bureau of Federal Facilities

Decision Document

Solid Waste Management Unit B-32 Building 101-41 Catchment Pit Hawthorne Army Depot Hawthorne, Nevada

SWMU - B32

September 2000

Decision Document SWMU B-32 Building 101-41 Catchment Pit HAWTHORNE ARMY DEPOT HAWTHORNE, NEVADA

1.0 Introduction:

This decision document describes the rationale for the proposed closure of SWMU B-32, building 101-41 catchment pit, at the Hawthorne Army Depot (HWAD), Hawthorne, Nevada. This document was prepared by the U.S. Army Corps of Engineers, Sacramento District, with the help of HWAD for the Nevada Department of Environmental Protection (NDEP).

Tetra Tech, Inc. (Tt), and Ecology and Environment (E&E) were tasked by the US Army Corps of Engineers, Sacramento District (USACE), to perform remedial investigations and ground water monitoring at the Hawthorne Army Depot (HWAD), Hawthorne, Nevada. These tasks were conducted from 1993 through 1997, primarily at solid waste management units (SWMUs) designated by the Army and the Nevada Division of Environmental Protection (NDEP). The NDEP is the lead regulatory agency for environmental issues at HWAD. The purpose of the sampling was to determine the extent and degree of environmental impacts, if any, associated with activities performed at each SWMU. The primary goal of the investigation was to assess the environmental impacts and to report the findings, present conclusions, and recommend any remediation, if necessary.

With guidance from the NDEP, basewide proposed closure goals (PCGs) for soil were established as acceptable levels so that SWMU closure could be recommended and to assist in directing the investigative efforts toward those SWMUs where the target analytes were of greatest concern (Appendix A). These PCGs were used as action levels throughout this investigation and are used for comparison with the detected analytes in this report.

2.0 Site History

SWMU B32 is in the HWAD's central magazine area, on the southeast side of the 101 Production Area (Figure 1-1). SWMU B32 is an inactive unlined catchment pit located 185 feet east of Building 101-41 (Figure 1-2). The catchment pit measures 35 feet by 15 feet and is up to 3 feet deep. The catchment pit has been eroded and partially filled with windblown sand.

The USACE, HWAD, and the NDEP agreed to define the boundaries of each SWMU using annotated monuments and survey pins. As part of E&E's 1997 field investigations, a survey monument was constructed and surveyed at SWMU B32. A brass survey pin on

the monument designates the monument number HWAAP-105-1996 and the SWMU number B32, respectively. Three corner pins were set and surveyed to define the SWMU boundary, with the monument as the northwest corner. The location of these corner markers and the SWMU boundary are shown on Figure 1-2. The survey data for this SWMU are presented in Appendix B.

3.0 Site Conditions

The catchment pit at SWMU B32 reportedly was in operation from 1940 to the early 1970s and may have received wastewater containing TNT and cyclotrimethlyenetrinitramine (RDX).

Soils encountered during E&E's investigation of SWMU B32 were composed of silty fine- and medium-grained sands. Explosive-stained soil was not observed on the surface of the pit or in any of the hand auger samples collected beneath the bottom of the catchment pit at HA01 (E&E 1995).

Based on the past uses of the pit and on observations made during the previous site investigations, the target analytes are known to be explosives and metals.

4.0 INVESTIGATIONS

Site inspections of SWMU B32 were conducted by the USAEHA (1988), Jacobs Engineering (1988), and RAI (1992). During these inspections, evidence of TNT-stained soil was not noted in the catchment pit. No investigation activities were conducted during these inspections, and no soil samples were collected from the SWMU at that time.

One surface soil sample and one near-surface soil sample were collected from sample location HA01 at SWMU B32. Sample location HA01 was located in the center of the catchment pit at the lowest elevation in the pit to assess the potential impact from the explosive wastewater that would tend to accumulate in this area. The subsurface investigation at SWMU B32 consisted of one CPT sounding with an adjacent sample boring, CPS01, drilled on the west side of the catchment pit as shown on Figure 3-1. The sounding was advanced to a total depth of 40 feet below ground surface (bgs).

5.0 Investigation Results

Arsenic (5.9 mg/kg and 12 mg/kg), barium (98 mg/kg and 280 mg/kg), total chromium (6 mg/kg and 6.6 mg/kg), and lead (8.4 mg/kg and 13 mg/kg) were detected in both the surface and near-surface soil samples collected at the SWMU. No other metals were detected in the samples (E&E 1995).

Arsenic (2.3 mg/kg to 14 mg/kg), barium (89 mg/kg to 180 mg/kg), total chromium (3.2 mg/kg to 7.8 mg/kg), and lead (3.2 mg/kg to 5.3 mg/kg) were detected in all of the subsurface soil samples collected at CPS01.

Laboratory results of the two hand-auger surface samples detected TNT at 0.22 mg/kg and 5.7 mg/kg. No explosives were detected in any of the subsurface samples collected at this SWMU (appendix C).

The detected metals in the subsurface soil samples included arsenic, barium, total chromium, and lead. All of these metals were reported at concentrations that did not exceed their PCGs or their maximum expected background concentrations. Because there was no obvious release of these metals to the subsurface soils at this SWMU, it appears that the concentrations of these metals are naturally occurring. Based on the previous site inspections, the remedial investigation data collected by E&E in 1994, and the above interpretation of these data, there does not appear to have been a release of metals that has impacted the subsurface soil at SWMU B32.

Inspite of the high detections of TNT and RDX using the field screening tests in 1994 the laboratory analysis of the same samples only detected very low levels of explosives. Based on the laboratory analysis there appears to be no release of explosives above PCG's at this SWMU.

6.0 Remediation

The site was used to do a pilot test of a static pile composting. 100 CY of soil was used in the static pile composting test. The soil and amendments were mixed, watered, placed in an excavation and covered with hay. The excavation used was the pit area at SWMU B-32.

7.0 Remediation Results

The sampling results of the static test program are presented in appendix D. All of the test results indicated contamination levels below cleanup goals. TNT was detected at a maximum of 8.28 mg/kg (goals 40 mg/kg) and the maximum RDX detection was 18.5 mg/kg (goals 64 mg/kg). In addition DZHC collected three soil samples from under the static pile. The highest detection from this sampling event was a TNT detection at 0.33 mg/kg. DZHC's sampling results are presented in appendix D. The static pile area was covered with a 6" layer of clean soil and graded to drain.

8.0 Public Involvement:

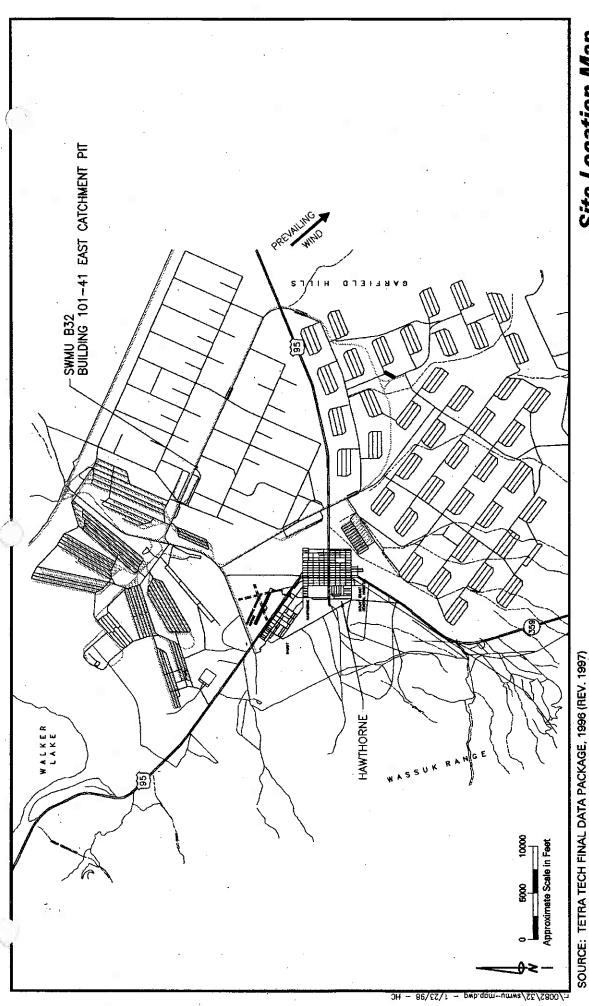
It is the U.S. Department of Defense and Army policy to involve the local community throughout the investigation process at an installation. To initiate this involvement, HWAD has established and maintains a repository library at the local public library. This

repository includes final copies of all past studies and other documents regarding environmental issues at HWAD. As future environmental documents are made available to HWAD the repository shall be updated.

HWAD has solicited community participation in establishment of a restoration and advisory board (RAB). To date there has been insufficient response and HWAD has not formed a RAB. HWAD has held open houses to inform the public of on going environmental issues. HWAD shall continue to solicit community involvement, and will establish a RAB should sufficient community interest be obtained.

9.0 Conclusions

SWMU B-32 should be closed with the restrictions that no structure be constructed on the SWMU, that the site remain only for industrial use and documented on the depot site master plan.


- Ecology and Environment. 1995. RCRA Facility Assessment Report for 24 Solid Waste Management Units, Hawthorne Army Depot, Hawthorne, Nevada. April 1995.
- Jacobs Engineering, 1988. RCRA Facility Assessment, Hawthorne Army Ammunition Plant, TES IV Work Assignment No. 433.
- Millsap, Herman. 1997. Hawthorne Army Depot. Personal communication via telephone with Richard Brunner of Tetra Tech, July 17, 1997.
- RAI. 1992. Site Screening Inspection (SSI) for the Hawthorne Army Ammunition Plant, Hawthorne, Nevada. Prepared for the US Army Corps of Engineers Toxic and Hazardous Materials Agency by Resource Applications, Inc., Falls Church, Virginia. December 1992.
- Tetra Tech. 1997a. Draft Quarterly Ground Water Monitoring Report, First Quarter 1997, Hawthorne Army Depot, Hawthorne, Nevada. April 1997.
 ______. 1997b. Quarterly Ground Water Monitoring Report, Second Quarter 1997,
- Hawthorne Army Depot, Hawthorne, Nevada. July 1997.

 ______. 1997c. Final Data Package with recommendations for future action, Group B solid waste management units, Hawthorne Army Depot, Hawthorne, Nevada,
- _____. 1997d. Final Technical Memorandum Background Sampling at the Hawthorne Army Depot, Hawthorne, Nevada. March 1997.
- . 1997. Final Remedial Investigation Report, Hawthorne Army Depot, Hawthorne, Nevada. December 1997.

Volumes 1, 2a, and 2b. January 1997.

- USACE. 1995. Risk Assessment Handbook: Volume I Human Health Assessment (EM 200-1-4). USACE. June 1995.
- . 1999. Final Field Sampling Report, West 101 Production Area: Hawthorne Army Depot, Hawthorne, Nevada. April 1999.
- USAEHA. 1988. Final Report. Ground Water Contamination Survey No. 38-26-0850-88. Evaluation of Solid Waste Management Units. HWAAP, Hawthorne, Nevada. May 12-19, 1987 and August 1-5, 1988.

- USATHAMA. 1977. Installation Assessment of Naval Ammunition Depot, Hawthorne, Nevada. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland. Records Evaluation Report No. 114.
- USEPA. 1989. Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A). December 1989.
- . 1996. Region IX Preliminary Remediation Goals. USEPA Region IX. August 1996.
- WaterWork. 1990. Hawthorne Army Ammunition Plant, Area 101 Surface Impoundments, Field and Lab Data and Analysis, Attachment 1-8.

Site Location Map SWMU B32 Building 101-41 East Catchment Pit Hawthorne Army Depot Hawthorne, Nevada Figure 1-1

Tetra Tech, Inc.

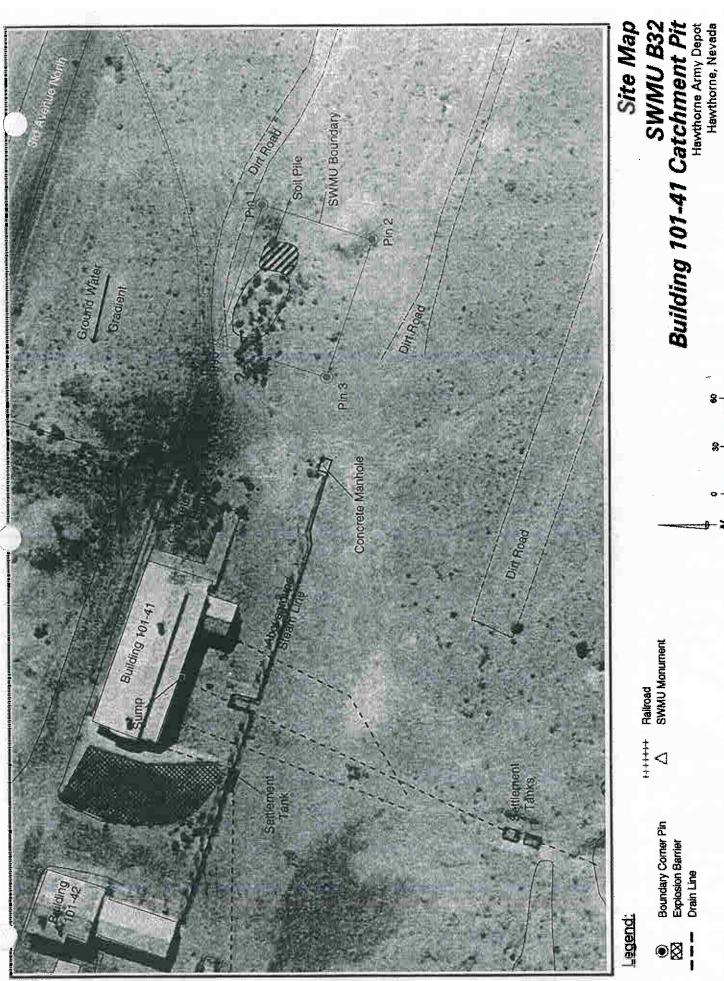
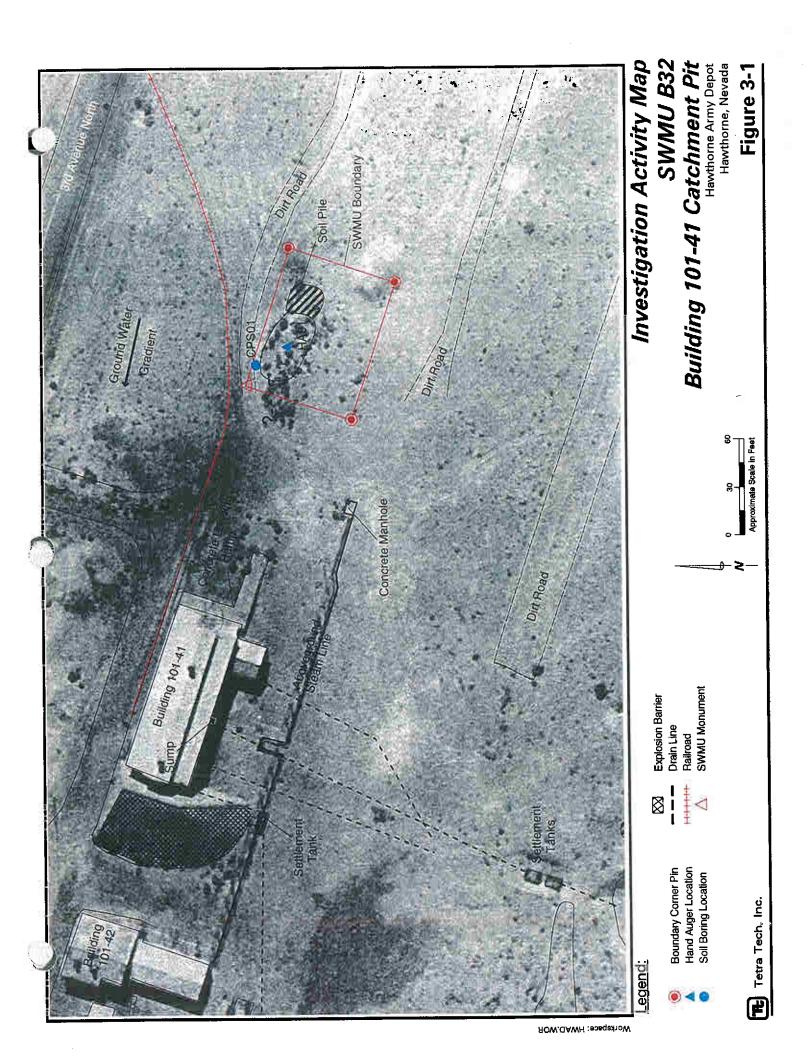



Figure 1-2

Tetra Tech, Inc.

ROW, CLAWH : spagethoW

Appendix A

Proposed Closure Goals Hawthorne Army Depot Hawthorne, Nevada

	Hawmon	o, 110111111		
300 maker of 14		Garcinogenic		
		(C) of Non-	NAM Proposed Closure Goals for	HVVAD Proposed
		carcinogenic (NC)	Salt (mg/Kg)	Closure Goal Source
Constituent of Concern.	Classification Anion	NC	128,000	Calculated Subpart S ⁴
trate		NC	•	NA°
Amino-dinitrotoluene	Explosive	NC		NA .
Amino-dinitrololuene	Explosive	NC	8	Calculated Subpart S
3-Dinitrobenzene	Explosive	NC	160	Calculated Subpart S
4-Dinitrotoluene	Explosive	NG	80	Calculated Suppart S
6-Dinitrotoluene	Explosive	NC	4,000	Calculated Subpart S
MX	Explosive	NC	40	Calculated Subpart S
litrobenzene	Explosive	NC	l 800	Calculated Subpart S
litrataluene (2-, 3-, 4-)	Explosive	NC	64	Calculated Subpart S
ROX	Explosive	ΝĊ	800	Calculated Subpart S
Fetryl	Explosive .	·	4	Calculated Subpart S -
1,3,5-Trinitrobenzene	Explosive	. "NC	233	Calculated Subpart S
2,4,6-Trinitroloiuene	Explosive	C .	80,000	Calculated Subpart S
Aluminum	Metal	NC	30	Background
Arsenic (cancer endpoint)	Metal	C&NC	5,600	Calculated Subpart S
Barium and compounds	Metal	NC	5,600	Background
Beryllium and compounds	Metal	C	40	Calculated Subpart S
Cadmium and compounds	Metal .		1	Calculated Subpart S
Chramium III and compounds	Metal	NC	80,000	PRG
	Metal	NC	1000	Calculated Subpart S
Le2d Mercury and compounds (inorganic)	Metal	NC	_ ·	Calculated Subpart S
	Metal	NC	400	Calculated Subpart S
Silver and compounds	Metal	NC	400	Calculated Subpart S
	PAH	NC	4,800	Calculated Subpart S
Acenaphthene	PAH	С	0.96	Detection Limit
Benzo(ajanthracene	.PAH	C	0.10	Calculated Subpart S
Benzo[a]pyrane	PAH	C	0,96	Calculated Subpart S
Banzofojfluoranthene	PAH	\ c	10	Calculated Subpart S
Senzo[k]fluoranthene	PAH	\ c	. 96	Calculated Subpart S
Chrysene	PAH	С	0.95	Calculated Subpart S
Dibenz(ah)anthracane	PAH	NC	3,200	Calculated Subpart S
Fluoranthene	PAH	NC	3,200	Calculated Subpart o
Fluorene	PAH	c		Calculated Subpart S
Indeno[1,2,3-cdjpyrene-	PAH	ИС	3,200	Calculated Subpart S
Naphthalene	PAH	ИС	2,400	
Pyrene	PAH	С	100	NOEP Level Clean-up
Total Petroleum Hydrocarbons as Diesel	<u> </u>	<u></u>	25	TSCA® .
(TPH-d) Polychlorinated biphenyls (PCBs)	PCBs	С	1,600	Calculated Subpart 5
Bis(2-ethylhexyl)phthalate (DEHP)	SVOC		89	Calculated Suppart
Sremoform (tribromomethane)	svoc	C		

Proposed Closure Goals Hawthorne Army Depot Hawthorne, Nevada

	Hawillott	,0, ,		
		Carcinogenic (C) of Non-	HWAD Proposed	HWAO Proposed
	Chemical	carcinogerac	Clasure Goels for Sail (mg/xg)	Closure Goal Source
Constituent of Concern	Classification	NC I	16,000	Calculated Subpart S
ctyl benzyl phthalate	svoc	С	83	Calculated Subpart S
Dibromechloromethane	svoc	NC	. 8,000	Calculated Subpart S
Dibutyl-phthalate	svoc	NC	64,000	Calculated Subpart S
Diethyl phthalate	svoc		•	NÀ
henanthrene	svoc	NC .	48,000	Calculated Subpart S
Phenol:	VOC	NC NC	800 ·	Calculated Subpart S
Acetone	voc .	NC	24,000	Calculated Subpart S
Anthracene	voc	C	24	Calculated Subpart S
Benzene	· voc	\ c	3,200	Calculated Subpart S
Bis(2-chloraisopropyl)ether	VOC	. NC	112	Calculated Subpart S
Bromomethane	Voc	c ·	5	Calculated Subpart S
Carbon tetrachloride		NC NC	1,600	Calculated Subpart S
Chlcrobenzene	voc	C	115	Calculated Subpart S
Chloroform	voc	C	538	Calculated Subpart S
Chioromethane	VOC		0.008	Calculated Subpart S
Oibramamethane	voc	NC	7,200	Calculated Subpart S
1,2-Dichlorobenzene	Voc:	· C	18,300	Calculated Subpart S
1,4Dichlorobenzene	voc	G	15,000	Calculated Subpart S
Dichlorodifluoromethane	VOC	NC	8,000	Calculated Subpart S
Sthylbenzene	Voc	NC NC	008	Calculated Subpart S
Methylene bromide	voc	C	4,800	Calculated Subpart S
Methylene chloride	voc		,,23	NA ····
2-Methylnaphthalene	VOC	C	35	Calculated Subpart S
1,1,2,2-Tetrachloroethane	voc	C&NC	800	Calculated Subpart S
Tetrachloroethylene (PCE)	voc	NC	16,000	Calculated Subpart S
Taluene	, voc	NC NC	7,200	Calculated Subpart 5
1,1,1-Trichloroethane	voc	CENC	480	Calculated Subpart
- Trichlorcethylene (TCE)	Voc	NC	24,000	Calculated Subpart
Trichlorofluoromethane	voc ·	'io	480	Calculated Subpart
1,2,3-Trichloropropane	voc	c	0.37	Calculated Subpart
Vinyl chlorida	voc	NC	160,000	Calculated Subpart
Xylene Total (m-, o-, p-)		- c	0.000005	Calculated Subpart
2,3,7,8-TC00 .	Dioxin			

^{*} RCRA 55 FR 30870

Not available

^{*}Highest background concentration detected in 50 background soil samples

⁴ Smucker, Stanford J. USEPA Rgion IX, Preliminary Remedial Goals, Second Half, Sep. 1995

^{*} Method detection limit for Volatile Organic Compounds by EPA Method 8260 or

Semi-Volatile Organic Compounds analyzed by EPA Method 8270

Nevada Division of Environmental Protection

⁶ Cleanup level for PCB spills in accordance with Toxic Substance and Control Act Spill Policy Guidelines 40 CFR 761

Proposed Excavation Goal (PEG's) by Definitive and Screening * Analysis-Maximum Concentration of Contaminants In Soil to Be Left in Place at Depth Below the Surface

Contaminant	Concentration (mg/kg)
2,4,6,-trinitrotoluene (TNT)	800*
2,4-dinitrotoluene (2,4-DNT)	80
2,6-dinitrotoluene (2,6-DNT)	80
1,3,5-trinitrobenzene (1,3,5-TNB)	150
1,3,-drinitrobenzne (1,3-DNB)	NE :
2-amino-4,6dinitrotoluene (2-Am-DNT)	NE
4-amino-2,6-dinitrotoluene (4-Am-DNT)	NE
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	4000
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	300
Picric acid	7.0
Pentachlorophenol	NE
Nitroaromatics/Nitroamines	<30

Clean-up Goals by Screening* and Definitive Analysis

Contaminant	Concentration (mg/kg)
2,4,6,-trinitrotoluene (TNT)	40*
2,4-dinitrotoluene (2,4-DNT)	2.6
2,6-dinitrotoluene (2,6-DNT)	2.6
1,3,5-trinitrobenzene (1,3,5-TNB)	4
1,3,-drinitrobenzne (1,3-DNB)	8
2-amino-4,6dinitrotoluene (2-Am-DNT)	· NE
4-amino-2,6-dinitrotoluene (4-Am-DNT)	NE
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)	100
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	64
Picric acid	7
Pentachlorophenol	None

Appendix B

NOTES

- FOR THE LOCATION OF THE FOLLOWING SWMU'S, REFER TO FIGURE 3-6 OF THE "FINAL R.C.R.A. FACILITY INVESTIGATION REPORT OF GROUP "A" SOLID WASTE MANAGEMENT UNITS A-04, B-16, B-21, B-24, B-26, AND H-01".
- THE "HWAD" MONUMENTS AS SHOWN HEREIN AS "M", ARE A 1' X 1' X 2'+ CONCRETE MONUMENT WITH A BRASS CAP STAMPED AS PER SPECIFICATIONS. ALL OF THE OTHER CORNERS ARE MARKED BY A 5/8" RE-BAR WITH A PLASTIC CAP STAMPED "STINCHFIELD PLS 3631" UNLESS NOTED OTHERWISE ON THE MAPS.
- HORIZONTAL DATUM IS BASED ON NAD 83(1994) AND MORE SPECIFICALLY, NGS STATION "W 2". "W 2" IS A FEDERAL BASE NETWORK CONTROL STATION AND IS LOCATED IN THE APPROXIMATE CENTER OF THIS PROJECT.
- 4. VERTICAL DATUM IS BASED ON NAVD 29. NAVD 88 ELEVATIONS HAVE BEEN SCALED AND THEREFORE ARE NOT ACCURATE. VERTICAL CONTROL USING GPS WAS USED TO ESTABLISH THE ELEVATIONS OF THE EXISTING CONTROL POINTS AND THE "HWAD" MONUMENTS. THE VALUE OF NGS STATION "W 2" WAS USED AS A BASIS FOR THE VERTICAL CONTROL.
- 5. COORDINATE VALUES OF EXISTING NGS CONTROL, TRAVERSE POINTS, AND HWAD MONUMENTS ARE STATE PLANE COORDINATES, WEST ZONE.
- THE COMBINED FACTOR WAS CALCULATED USING THE FOLLOWING FIGURES. THE "MAP SCALE" AT POINT "W 2" IS 0.99990022, THE MEAN ELEVATION OF THE TOTAL PROJECT WAS TAKEN AS 4150.00 FEET ABOVE SEA LEVEL AND THE MEAN RADIUS OF THE EARTH WAS TAKEN AS 20,906,000 FEET. THE SEA LEVEL FACTOR WAS CALCULATED AS FOLLOWS: 20,906000/20,906,000 + 4150.00 = 0.999801532. THE COMBINED FACTOR (CF) WAS CALCULATED AS FOLLOWS: 0.99990022 X 0.999801532 = 0.999701772.
- GROUND DISTANCE X CF (0.999801532) = GRID DISTANCE.
- 8. GRID DISTANCE X INVERSE CF (1.00298317) = GROUND DISTANCE.
- COORDINATE VALUES OF ALL OTHER POINTS INCLUDING SWMU CORNERS OTHER THAN "HWAD" MONUMENTS, REFERENCE POINTS, TEST PIT OR HOLE LOCATIONS ETC., WERE CALCULATED USING GROUND DISTANCES AND ARE THEREFORE NOT TRUE STATE PLANE COORDINATES.

10. DISTANCES AS SHOWN ON THESE SWMU'S ARE HORIZONTAL GROUND DISTANCES.

GENERAL NOTES

SWMU B32 Survey Data Hawthorne Army Depot Hawthorne, Nevada

SWMU	Point ID	Northing (feet)	Easting (feet)	Elevation
B32	HA01	1388254.10	500498.21	4230.507
B32	CPS01	1388274.95	500488.94	4234.423
B32	■ Pin 3	1388218.31	500448.88	4233.979
B32	Pin 2	1388182.39	500531.40	4236.890
B32	Pin 1	1388246.57	500559.34	4234.982
B32	HWAAP-105-1996	1388282.47	500476.88	4234.467

Notes:

NE = Not established

Coordinate data based on electronic map file using the NAD 1927 datum.

Elevation data based on surveyors map using NGVD 1929 datum.

Appendix C

B32-CPS1-1-009.5 CPS01 5/25/94 9.5 180 <0.53	Sample ID	Location ID	Sample Date	Depth (feet)	Barium	Beryllium	muimbsO	Chromium Total	Silver	Arsenic	у .	muinələS
CPS01 5/25/94 9.5 180 <0.52 <0.52 4.8 <1 NA NA CPS01 5/25/94 9.5 89 <0.53					mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
CPS01 5/25/94 9.5 89 <0.53 <0.53 7.8 <1 NA NA CPS01 5/25/94 16 150 <0.53 <0.53 7.8 <1 NA NA CPS01 5/25/94 19.5 120 <0.54 <0.54 3.2 <1.1 NA NA NA HAO1 5/10/94 0.5 98 <0.57 <0.57 6.6 <1.1 NA NA NA HAO1 5/10/94 5 280 <0.54 <0.54 6 <1.1 NA NA NA HAO1 5/10/94 5 280 <0.54 <0.54 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1	l	6	9	63 67	α	7	Ą.	Ą	Ą
CPS01 5/25/94 9.5 89 <0.53 <0.53 7.8 <1 NA NA CPS01 5/25/94 16 150 <0.53	32-CPS1-1-009.5	CPS01	5/25/34		00	×0.52	7 0.0 ×) ·	7	§		
CPS01 5/25/94 16 150 <0.53 <0.53 5.8 <1 NA NA CPS01 5/25/94 19.5 120 <0.54	32-CPS2-1-009.5	CPS01	5/25/94		83	<0.53	<0.53	% .	⊽	¥	¥	₹
CPSQ1 5/25/94 19.5 120 <0.54 <0.54 3.2 <1.1 NA NA HA01 5/10/94 0.5 98 <0.57	32-CPS1-1-016	CPS01	5/25/94		150	<0.53	<0.53	5.8	⊽	NA	Ϋ́	Ä
HA01 5/10/94 0.5 98 <0.57 <0.67 6.6 <1.1 NA NA NA HA01 5/10/94 5 280 <0.54 <0.54 6.6 <1.1 NA NA NA HA01 5/10/94 5 280 <0.54 <0.54 6.6 <1.1 NA	32-CPS1-1-019.5	CPS01	5/25/94		120	<0.54	<0.54	3.2	4.1	N V	Ϋ́	¥
HA01 5/10/94 5 280 <0.54 <0.54 6 <1.1 NA NA NA Integration entration entration entration 280 0 0 3,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32-HA1-1-000	HA01	5/10/94		86	<0.57	<0.57	9.9	~1.1	¥	¥	¥
6 6 6 6 6 0 0 entration 89 0 0 6 0	32-HA1-1-005	HA01	5/10/94		280	<0.54	<0.54	9	4.1	¥	Α <u>ν</u>	NA NA
Soncentration Concentration Co												
Subackground Concentration 6 0 0 6 0	sesyled				မ	9	9	9	9	0	0	0
280 0 0 3.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	naryses				9	0	0	9	0	0	0	0
2000 1 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	inimim Concentration				83	0	0	3,2	0	0	0	0
2000 1 20 20 100 100 100 s s ound Concentration 447 0.58 1.08 13.76 0 18.1 16.7 0 0 0 0 0 0 0	aximum Concentration				280	0	0	7.8	0	0	0	0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MAD - PCG				2000	~	20	20	100	100	100	20
round Concentration 447 0.58 1.08 13.76 0 18.1 16.7 0 0 0 0 0 0 0 0	WAD - PCG Hits				0	0	0	0	0	0	Ο.	0
	invimum Backaround Cor	ncentration			447	0.58	1.08	13.76	0	18.1	16.7	0
	ackground Hits				0	0	0	0		0	0	0

Notes: NA = Not analyzed Sample B32-CPS2-1-009.5 is a duplicate of B32-CPS1-1-009.5.

Arsenic Method 7060 (ASC)

	Sample ID	Location ID	Sample Date	Depth (feet)	Arsenic
					mg/kg
B32-C	PS1-1-009.5	CPS01	5/25/94	9.5	12
B32-C	PS2-1-009.5	CPS01	5/25/94	9.5	7.4
B32-C	PS1-1-016	CPS01	5/25/94	16	2.3
B32-C	PS1-1-019.5	CPS01	5/25/94	19.5	14
B32-H	IA1-1-000	HA01	5/10/94	0.5	5.9
B32-H	IA1-1-005	HA01	5/10/94	5	12
Analys	ses				6
Detec	tions				6
Minim	um Concentration				2.3
Maxim	num Concentration				14
					• •
HWAE	O - PCG				100
HWAE	O - PCG Hits				0
					Ū
Maxim	num Background Conc	entration			18.1
	round Hits				0

Notes:

Lead Method 7421 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	Lead
				mg/kg
B32-CPS1-1-009.5	CPS01	5/25/94	9.5	3.4
B32-CPS2-1-009.5	CPS01	5/25/94	9.5	3.2
B32-CPS1-1-016	CPS01	5/25/94	16	4.7
B32-CPS1-1-019.5	CPS01	5/25/94	19.5	5.3
B32-HA1-1-000	HA01	5/10/94	0.5	13
B32-HA1-1-005	HA01	5/10/94	5	8.4
Analyses				6
Detections				6
Minimum Concentration				3.2
Maximum Concentration				13
HWAD - PCG				100
HWAD - PCG Hits				0
Maximum Background Conce	ntration			16.7
Background Hits				0

Notes:

Mercury Method 7471 (ASC)

B32-CPS1-1-009.5 CPS01 5/25/94 9.5 <0.1 B32-CPS2-1-009.5 CPS01 5/25/94 9.5 <0.1 B32-CPS1-1-016 CPS01 5/25/94 16 <0.1 B32-CPS1-1-019.5 CPS01 5/25/94 19.5 <0.11 B32-HA1-1-000 HA01 5/10/94 0.5 <0.11 B32-HA1-1-005 HA01 5/10/94 5 <0.11 Analyses 6 Detections 0 Minimum Concentration 0
B32-CPS2-1-009.5 CPS01 5/25/94 9.5 <0.1 B32-CPS1-1-016 CPS01 5/25/94 16 <0.1
B32-CPS2-1-009.5 CPS01 5/25/94 9.5 <0.1 B32-CPS1-1-016 CPS01 5/25/94 16 <0.1
B32-CPS1-1-016 CPS01 5/25/94 16 <0.1 B32-CPS1-1-019.5 CPS01 5/25/94 19.5 <0.11
B32-CPS1-1-019.5 CPS01 5/25/94 19.5 <0.11 B32-HA1-1-000 HA01 5/10/94 0.5 <0.11
B32-HA1-1-000 HA01 5/10/94 0.5 <0.11 B32-HA1-1-005 HA01 5/10/94 5 <0.11
B32-HA1-1-005 HA01 5/10/94 5 <0.11 Analyses 6 Detections 0 Minimum Concentration 0
Analyses 6 Detections 0 Minimum Concentration 0
Detections 0 Minimum Concentration 0
Detections 0 Minimum Concentration 0
Minimum Concentration 0
·
Maximum Concentration 0
HWAD - PCG 24
HWAD - PCG Hits 0
Maximum Background Concentration 0.108
Background Hits 0

Notes:

Selenium Method 7740 (ASC)

	Sample ID	Location ID	Sample Date	Depth (feet)	Selenium
			<u>-</u> .		mg/kg
B32-0	CPS1-1-009.5	CPS01	5/25/94	9.5	<1
	CPS2-1-009.5	CPS01	5/25/94	9.5	<1
	CPS1-1-016	CPS01	5/25/94	16	<0.53
	CPS1-1-019.5	CPS01	5/25/94	19.5	<1.1
	IA1-1-000	HA01	5/10/94	0.5	<0.57
B32-l	HA1-1-005	HA01	5/10/94	5	<0.54
Analy		···			6
Analy Detec					0
	num Concentration				_ 0
	num Concentration				0
HWA	D - PCG			,	20
HWA	D - PCG Hits				0

Notes:

Explosives Method 8330 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	2,4,6-TNT	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Amino-4,6-DNT	2-Nitrotoluene	3-Nitrotoluene	4-Amino-2,6-DNT
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
B32-CPS1-1-009.5	CPS01	5/25/94	9.5	<1	<1	<1	<1	< 1	< 1	<1
B32-CPS2-1-009.5	CPS01	5/25/94	9.5	<1	<1	<1	<1	<1	<1	<1
B32-CPS1-1-016	CPS01	5/25/94	16	<1	<1	<1	<1	<1	<1	<1
B32-CPS1-1-019.5	CPS01	5/25/94	19.5	<1	<1	<1	<1	<1	<1	<1
B32-HA1-1-000	HA01	5/10/94	0.5	5.7	<1	<1	<1	<1	<1	<1
B32-HA1-1-005	HA01	5/10/94	5	0.22 J	· <1	<1	<1	<1	<1	<1
Analyses				6	6	6	6	6	6	6
Detections				2	0	0	0	0	0	0
Minimum Concentration				0.22	0	0	0	0	0	0
Maximum Concentration				5.7	0	0	0	0	0	0
HWAD - PCG				233	2.6	80	NE	800	800	NE
HWAD - PCG Hits	•			0	0	0	NE	0	. 0	NE

Norns:

Not established

Explosives Method 8330 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	4-Nitrotoluene	НМХ	m-Dinitrobenzene	Nitrobenzene	RDX	sym-Trinitrobenzene	Tetryl
				mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
B32-CPS1-1-009.5	CPS01	5/25/94	9.5	<1	<1	<1	<1	<1	<1	<1
B32-CPS2-1-009.5	CPS01	5/25/94	9.5	<1	<1	<1	<1	<1	<1	<1
B32-CPS1-1-016	CPS01	5/25/94	16	<1	<1	<1	<1	<1	<1	<1
B32-CPS1-1-019.5	CPS01	5/25/94	19.5	<1	<1	<1	<1	<1	<1	<1
B32-HA1-1-000	HA01	5/10/94	0.5	<1	<1	<1	<1	<1	<1	<1
B32-HA1-1-005	HA01	5/10/94	5	<1	<1	<1	<1	<1	<1	<1
Analyses		· · · · ·	·	6	6	6	6	6	6	6
Detections				0	0	0	0	0	0	0
Minimum Concentration				0	0	0	0	0	0	0
Maximum Concentration				. 0	0	0	0	0	0	0
HWAD - PCG				800	4000.	8	40	64	4	800
HWAD - PCG Hits	1 3**	way.		0	0_	0	0	0	0	0

.es:

NE = Not established

Picric Acid Method M8330 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	mg/kg Picric Acid
B32-CPS1-1-009.5 B32-CPS2-1-009.5 B32-CPS1-1-016 B32-CPS1-1-019.5 B32-HA1-1-000	CPS01 CPS01 CPS01 CPS01 HA01 HA01	5/25/94 5/25/94 5/25/94 5/25/94 5/10/94 5/10/94	9.5 9.5 16 19.5 0.5 5	<0.25 <0.25 <0.25 <0.25 <0.25 <0.25 <0.25
Analyses Detections Minimum Concentration Maximum Concentration HWAD - PCG HWAD - PCG Hits				6 0 0 0 7 0

Notes:

NE = Not established

Appendix D

Table 7-2 Static Pile Analytical Data Bioremediation Pilot Study

Sample ID	Location ID	Sample Date	Depth	Lab	1,3,5-Trinitrobenzene	1,3-Dinirobenzene	2,4,6-Trinitrotoluene	2,6-Dinitrosolucne	HAIX	RDX	2-Amino-4,6-dinitrotoluenc	4-Amino-2,6-dinitrotoluene
			ft	, , , , , , , , , , , , , , , , , , ,	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
PS-SP01-1-S	SP01	6/12/97	1.5	APCL	1.5	< 0.035	7.38	< 0.079	4.9	18.5	0.8	7.74
PS-SP01-2-S	SP01	6/12/97	1	APCL	1.8	< 0.033	8.28	< 0.073	5	18.2	1.1	6.2
PS-SP01-3-S	SP01	6/12/97	1	APCL	1.5	< 0.031	5.6	< 0.069	6.1	14 <i>.7</i>	1:3	5.2
PS-SP01-4-S	SP01	6/18/97	2	APCL	< 0.077	NA	13.3	< 0.056	4.3	15.8	< 0.053	< 0.085
PS-SP01-5-S	SP01	6/18/97	2	APCL	0.96	NA	1.6	< 0.055	3.9	3.2	< 0.052	< 0.083
PS-SP01-6-S	SP01	6/25/97	2.5	APCL	0.65	< 0.039	< 0.062	< 0.087	< 0.072	< 0.078	< 0.09	< 0.12
PS-SP01-7-S	SP01	6/25/97	2.5	APCL	< 0.018	< 0.035	0.3	< 0.079	2.2	< 0.07	< 0.081	< 0.11
PS-SP01-8-S	SP01	7/2/97	2.5	APCL	< 0.087	< 0.047	5.1	< 0.063	5.8	0.43	0.76	< 0.095
PS-SP01-9-S	SP01	7/2/97	2.5	APCL	< 0.086	< 0.047	< 0.078	< 0.062	< 0.081	< 0.061	< 0.059	< 0.095
PS-SP01-10-S	SP01	7/9/97	2.5	APCL	1.2	0.42	0.35	< 0.074	2.4	< 0.066	< 0.077	< 0.1
PS-SP01-11-S	SP01	7/9/97	2.5	APCL	0.3	< 0.03	0.3	< 0.067	0.67	0.64	< 0.069	< 0.094
PS-SP01-12-S	SP01	7/9/97	2.5	APCL	0.36	< 0.034	0.5	< 0.076	1.6	1.1	< 0.079	< 0.11
PS-SP01-13-S	SP01	7/15/97	2	APCL	< 0.017	0.39	< 0.053	< 0.074	5.9	< 0.066	< 0.077	< 0.1
PS-SP01-14-S	SP01	7/15/97	2	APCL	0.57	< 0.033	0.35	< 0.073	3.6	1.3	< 0.076	< 0.1
PS-SP01-15-S	SP01	7/23/97	2.5	APCL	<0.018	< 0.034	0.3	< 0.076	< 0.063	< 0.068	< 0.079	< 0.11
PS-SP01-16-S	SP01	7/23/97	2.5	APCL	< 0.017	< 0.033	< 0.052	< 0.073	< 0.06	< 0.066.	< 0.076	< 0.1
PS-SP01-17-S	SP01	7/30/97	2.5	APCL	< 0.085	< 0.046	< 0.076	< 0.061	< 0.079	< 0.06	< 0.058	< 0.093
PS-SP01-18-S	SP01	7/30/97	2.5	APCL	< 0.087	< 0.047	< 0.079	< 0.063	< 0.081	< 0,061	< 0.06	< 0.096
PS-SP01-19-S	SP01	8/6/97	2.5	APCL	0.77	< 0.047	< 0.078	< 0.063	< 0.081	< 0.061	< 0.06	< 0.095
PS-SP01-20-S	SP01	8/6/97	2.5	APCL	< 0.086	< 0.047	< 0.078	< 0.062	< 0.081	< 0.061	< 0.059	< 0.095
PS-SP01-21-S	SP01	9/26/97	4	APCL	< 0.08	< 0.043	< 0.072	1.3	< 0.075	< 0.056	NA	<0.088
PS-SP01-22-S	SP01	9/26/97	4	APCL	< 0.076	< 0.041	< 0.069	< 0.055	< 0.071	0.82	NA	< 0.084
PS-SP01-23-S	SP01	9/26/97	4	APCL	< 0.078	< 0.042	< 0.071	< 0.056	< 0.073	< 0.055	NA	< 0.086
PS-SP01-24-S	SP01	9/26/97	4	APCL	< 0.083	< 0.045	< 0.075	<0.06	< 0.078	< 0.059	`NA	<0.091
Analyses				<u> </u>	24	22	24	24	24	24	20	24
Detections					10	2	12	1	12	10	4	. 3
Minimum Cor	centration				0.3	0.39	0.3	1.3	0.67	0.43	0.76	5.2
Maximum Cor	ncentration				1.8	0.42	13.3	1.3	6.1	18.5	1.3	7,74
HWAD - PCC	;				4	8	233	80	4000	64	NE	NE
HWAD - PCC	Hits				0	0	0	0	0	0	NE	NE

Notes:

NA = Not analyzed NE = Not established

Since the reported explosive compound concentrations are very low, and no temporal trend in the levels is observed, it cannot be stated categorically that remediating soils using the static bioremediation method is effective. However, temperature and vapor monitoring data indicate that an aerobic biodegradation process was occurring within the static pile, and there is at present no reason to suspect that the static method would not be effective during future tests. In

Applied P & Ch Laboratory 13750 Magnolia Ave. Chino CA 91710

(909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

				Analysis Result			
Component Analyzed	Method	Umt	PQL	98-06966-9	99-06966-10		
NITROAROMATICS AND NITROAMI	NES				/		
Dilution Factor				10	10		
4-AMINO-2,6-DINITROTOLUENE	8330	mg/kg	0.2	<i>ኢ</i> 9	7.7		
2-AMINO-4,6-DINITROTOLUENE	8330	mg/kg	0.2	3/	<i>)</i> 2J		
1,3-DINITROBENZENE	8330	mg/kg	0.25	<3.1	/<3.1		
2,4-DINITROTOLUENE	8330	mg/kg	0.25	< 3.1	< 3.1		
2,6-DINITROTOLUENE	8330	mg/kg	0.25	<3.1	<3.1		
HMX	8330	mg/kg	0.25	42	25		
NITROBENZENE	8330	mg/kg	0.25	₹3.1	/ <3.1		
3-NITROTOLUENE '	8330	mg/kg	0.25	<3.1.	<3.1		
RDX	8330	mg/kg	0.25	289	230		
TETRYL	8330	mg/kg	0.25	<3.1 ∕	1.63		
1,3,5-TRINITROBENZENE	8330	mg/kg	0.25	7.3	5.3		
2,4.6-TRINITROTOLUENE	8330	mg/kg	0.25	138 /	√ 94		
2-NITROTOLUENE (*)	8330	mg/kg	0.25	<3,1	£3.1		
4-NITROTOLUENE (a)	8330	mg/kg	0.25	20.1	< 3.7		

				Analysis Rosult		
Component Analyzed	Method	Unit	PQL	99-06966-11	99-06966-12	
MOISTURE	ASTM-D2216	%Moisture	0.5	14.6	21.8	
NITROAROMATICS AND NITROAM	NES					
Dilution Factor				1 /	1	
4-AMINO-2,6-DINITROTOLUENE	8330	mg/kg	0.2	< 0.23	< 0.26	
2-AMINO-4,6-DINITROTOLUENE	8330 .	mg/kg	0.2	< 0.23 /	< 0.26	
1,3-DINITROBENZENE	8330	mg/kg	0.25	< 0.29	< 0.32	
2,4-DINITROTOLUENE	8330	mg/kg	0.25	< 0.29 /	< 0.32	
2,6-DINITROTOLUENE	8330	mg/kg	0.25	< 0,29	< 0.32	
нмх	8330	mg/kg	0.25	< 0.29 /	< 0.32	
NITROBENZENE	8330	mg/kg	0.25	< 0.29/	< 0.32	
3-NITROTOLUENE	8330	mg/kg	0.25	< 0.29	< 0.32	
RDX	8330	mg/kg	0,25	0.77	0.23	
TETRYL	8330	mg/kg	0.25	< 0.79	< 0.32	
1,3,5-TRINITROBENZENE	8330	mg/kg	0.25	<0.29	0.2J	
2,4,6-TRINITROTOLUENE	8330	mg/kg	0.25	0:\$8	0.33	
2-NITROTOLUENE (a)	8330	mg/kg	0.25	< p.29	< 0.32	
4-NITROTOLUENE (a)	8330	ing/kg	0.25	√ 0.29	< 0.32	

				. Analys	is Result
Component Analyzed	Method	Unit .	PQL	SMB32-HOLE-02-P 99-06966-13	5MB32-HOLE-03-P 99-06966-14
MOISTURE	ASTM-D2216	%Moisture	0.5	11.0	4.6

_ADHS ELAP No.: 1431 Army Corp Approved since 08/18/95

CI-0998 DOO3 N 99-6966 \$

Applied P & Ch Laboratory

13760 Magnolia Ave. Chino CA 91710 Tel: (909) 590-1828 Fax: (909) 590-1498

APCL Analytical Report

	Metho	ed Uni	· DOT	Analysis Result SMB32-HOLE-02-P SMB32-HOLE-03-			
	MELIC	na Om	t PQJ,			SMB32-HOLE-03- 99-06956-14	
ND NITROAN	aines						
				1		1	
ROTOLUÉNE	8330	me/	ce 0.2			< 0.21	
ROTOLUENE	8330					< 0.21	
NE							
NE						< 0.26	
NE						<0.26	
						<0.26	
						< 0.26	
						< 0.26	
						< 0.26	
						< 0.26	
ソヤルロ				< 0.28		< 0.26	
Dene. Tinati				< 0.2\$		< 0.26	
	-	nig/k	g 0.25	< 0.28		< 0.26	
	8330	mg/k	g 0.25	< 0.28		< 0.26	
4)	8330	mg/k	g 0.25	< 0.28		< 0.26	
					~~		
		· · · · · · · · · · · · · · · · · · ·	 	Analysis Result			
Method	Unit	PQL	A3-WR007E-0			07E-C002-CC001-P	
			99-06	966-1		9-06965-2	
]		1	
M8330	mg/kg	2.5	< 0	1.5		< 3.9	
		Charles		Analysis	Result		
Method	Unit	PQL		•		07E-C004-CC001-P 9-06066-4	
			1			1	
M8330	nig/kg	2,5	<1	.2		< 4.0	
							
Mathed	11-14	DOI		-			
Pretnoa	NUI!	PQL				3B-C001-CC001-P 9-06966-6	
			1		·	1	
M8330	ing/kg	2.5	< 6.	.0		< 3.5	
				•	,	- <u> </u>	
16.13					Analysis Result		
Method	Unit	PQI,		002-CC001-P	P2-WR00	9B-C003-CC001-P I-06966-8	
M8330	me/ke	2 5	I		•	1 <3.3	
	ROTOLUENE ROTOLUENE NE NE NE NE NE NE Method M8330 Method M8330 Method	ROTOLUENE 8330 NE 8330 NE 8330 8330 8330 8330 ENE 8330 8330 ENE 83	ROTOLUENE 8330 mg/l ROTOLUENE 8330 mg/l NE 8330 mg/l SNE 8330 mg/l 830 mg/l	ROTOLUÉNE 8330 mg/kg 0.2 ROTOLUÉNE 8330 mg/kg 0.25 NE 8330 mg/kg 0.25 NE 8330 mg/kg 0.25 NE 8330 mg/kg 0.25 2ENE 8330 mg/kg 0.25 UENE 8330 mg/kg 0.25 (a) 8330 mg/kg 0.25 Method Unit PQL A3-WR007E-C 99-065 M8330 mg/kg 2.5 Method Unit PQL A3-WR007E-C 99-065	### Page 12	ND NITROAMINES 1	

7HS ELAP No.: 1431

Army Corp Approved since 08/18/95

CI-0998 D003 R 99-6966 | Pages

Appendix E

SWMU B-32. Facing north with Building 101-41 in the background. A 4" galvanized steel discharge pipe on northern end of impoundment. R1N15. 9/26/94.

